Formulation and Evaluation of Liquisolid Compact of Etoricoxib for Solubility Enhancement

Tikariya Komal*; Dr. Agrawal Shikha
Department of Pharmaceutics, Swami Vivekanand College of Pharmacy, Indore (M.P) India

ABSTRACT: Liquisolid compact technique is a novel concept for delivery of drug through oral route. This approach of delivering drug is mostly suitable for lipophilic drug and poorly or water insoluble drugs. The main objective of present study was to increase the solubility of water in soluble BSc class II drug etoricoxib. Etoricoxib is alipophilic drug that is practically insoluble in water and exhibit an excessively slow dissolution rate in class II compound in biopharmaceutics classification system. The liquid solid compacts were prepared using PEG 400 as non volatile solvent, microcrystalline cellulose as carrier, aerosil 200 as coating material and Sodium starch glycolate was used as super disintegrating agent. Several formulations of liquid solid compacts having different drug concentration in PEG 400 (non volatile solvent) with varying ratio of carrier to coating material were prepared. The liquid solid compacts were evaluated for Bulk characterization, Flow properties, solubility studies, drug content, FTIR studies, DSC studies and in vitro drug release studies. The saturated solubility studies and in vitro drug release studies shows that the increase in solubility of drug and enhanced drug release rate in liquisolid compacts compared to pure drug. The Formulation F5 and F4 is considered as best formulation as it has shown highest drug release in short time (1 hr). Our studies showed that the solubility of the drug can be significantly enhanced with increase in the carrier content there is increase in the solubility resulting and enhanced drug release rate.

Keywords:-Liquisolid compacts, Etoricoxib, carrier material, coating material Solubility enhancement, in vitro drug release.

INTRODUCTION

The enhancement of dissolution profile, absorption efficiency and bio availability of water insoluble drugs is one of the major concern of present Pharmaceutical research. Different techniques are employed to enhance the dissolution of poorly soluble drugs like use of water soluble salt and polymorphic forms, solid dispersion, reducing particle size to increase the surface area, pH adjustment, co-precipitation, polymer modification Lyophilization, microencapsulation, liquid solid Technology. Liquisolid compacts technique is one of the novel and most promising technique for promoting drug dissolution rate and efficacy of poorly soluble or water insoluble drugs. The term “liquisolid medication” implies oily liquid
drug and solution or suspensions of water insoluble solid drugs carried in suitable non volatile solvent system. By using this formulation technique liquid medication may be may be transformed into a free flowing, readily compressible dry powder by simple physical blending with selected excipients referred to as the career and coating materials\(^1,2\).

Etoricoxib (5-chloro-2-[6-methyl pyridine-3-yl]-3-[4-methylsulfonylphenyl] pyridine) is a novel, selective second-generation, cyclooxygenase-2 inhibitor administered orally as an analgesic and anti-inflammatory drug. Etoricoxib does not inhibit prostaglandin synthesis in the gastric mucosa, even at doses above the clinical dose range of 60-120 mg\(^3\).

The main objective of the study is to investigate the possibility of improving the solubility and in vitro drug release rate of Etoricoxib. Liquisolid compacts were formulated by using PEG 400 as non volatile solvent, microcrystalline cellulose as carrier, aerosil 200 as coating material and Sodium starch glycolate was used as super disintegrating agent. The in vitro drug release profile of liquisolid compacts was compared with that of pure drug. Differential scanning calorimetry (DSC) and Fourier transform infra-red (FTIR) was performed to ensure that there was no possible introduction between drug and excipients\(^4\).

I. MATERIALS AND METHOD

1. MATERIALS

Etoricoxib was received as a gift sample from Glenmark pharmaceuticals limited (pithampur). Polyethylene glycol (PEG 400) was procured from central drug house (P) LTD (NewDelhi). Microcrystalline cellulose (MCC) From SdFine-chem. limited (Mumbai). Sodium Starch glycolate (SSG) from Qualichems (vadodara). Aerosil from Fine- chem. limited (Mumbai). All other solvent and reagent are used was of analytical grade.
II. EXPERIMENTALS

2.1 Identification of drug

2.1.1 By UV Spectroscopy

In order to ascertain the optimum wavelengths of Etoricoxib, the solution of Etoricoxib in phosphate buffer was scanned on UV-Visible Spectroscopy in the range of 200-400 nm against phosphate buffer 7.4 pH as blank. The spectrum of etoricoxib is shown in fig 1.

2.1.2 By melting point determination

Melting point determination of drug was performed using melting point apparatus (BTI-34). In this method small amount of drug was filled in capillary tube open from both ends and it was placed along with thermometer in melting point apparatus. The temperature in the heating stand is ramped at user programmable fixed rate until the sample in the tube transition into the liquid state. Melting point of drug sample is shown in table 1.

2.1.3 By Fourier transform infrared spectroscopy analysis

Identification of Etoricoxib was done by FTIR Spectroscopy. The sample was analysed by FTIR instrument (IR Affinity-1, Shimadzu, Japan) was scanned and recorded. The obtained IR spectrum is shown in fig 6.

2.2 Preparation of standard Calibration curve of Etoricoxib

Standard stock solution of Etoricoxib was prepared by dissolving 100 mg of drug in 100 ml of phosphate buffer 7.4 (1000 µg/ml) from the above stock solution 10 ml was taken and diluted to 100 ml in phosphate buffer 7.4 (100 µg/ml). From the above solution 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 ml was taken and diluted upto 10 ml with phosphate buffer 7.4 to get series of solutions in concentration. Absorbance was noted using UV-VIS
Spectrophotometer at 288 nm against blank (phosphate buffer 7.4)\(^6\). The calibration curve of etoricoxib is shown in fig.2.

2.3 Solubility study

Solubility of Etoricoxib was determined in distilled water and various non aqueous solvents like PEG 400, methanol, ethanol, HCl, chloroform, phosphate buffer 7.4. Excess amount of Etoricoxib was saturated in 10 ml of selected solvents in conical flask for determination of solute dissolved in each solvent and was shaken at 25°C for 24 hrs. After 24 hrs equilibrium would be attained and the sample was filtered through whatman filter paper. the samples was analysed after suitable dilution for the concentration of drug dissolved using UV-VIS Spectrophotometer\(^6\). The solubility of etoricoxib in different solvents are shown in table 2.

2.4 Method of preparation of liquisolid compact

a) Preparation of drug solution

For the preparation of liquisolid compact of Etoricoxib, a non volatile solvent is selected for dissolving the drug from the results of solubility studies. liquisolid powder containing PEG 400 as the liquid medication, Microcrystalline cellulose as a carrier and Aerosil pH 200 as coating material was selected for the preparation of liquisolid compact. various ratio of carrier to coating material were selected according to solubility of Etoricoxib. The required quantities of drug and PEG 400 were accurately weighed and placed in a beaker and then stirred continously, until a homogenous drug solution was obtained. Selected amounts (W) of the resultant liquid medications were incorporated into calculated quantities of carrier contained in themortar\(^7\).

b) Mixing

The mixing procedure was conducted in three stages. During the first stage, the system was blended at an approximate mixing rate of one rotation/ sec for approximately one minute in order to evenly distribute the liquid medication into the powder.
In the second mixing stage, calculated quantities of coating material were added to the system in blended for 2 min. The liquid/powder admixture was evenly spread as a uniform layer of the surfaces of mortar and left standing for approximately 5 min to allow the dug solution to be absorbed in interior of the powder particles.

Table 3. Composition of optimized liquisolid system

<table>
<thead>
<tr>
<th>Formulation Code</th>
<th>ECB(drug)</th>
<th>Non volatile solvent (PEG400)</th>
<th>Carrier material (MCC)</th>
<th>Coating material (Aerosil)</th>
<th>Super disintegrant (SSG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>60 mg</td>
<td>100 mg</td>
<td>200 mg</td>
<td>10 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>F2</td>
<td>60 mg</td>
<td>100 mg</td>
<td>205 mg</td>
<td>10 mg</td>
<td>15 mg</td>
</tr>
<tr>
<td>F3</td>
<td>60 mg</td>
<td>110 mg</td>
<td>200 mg</td>
<td>10 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>F4</td>
<td>60 mg</td>
<td>110 mg</td>
<td>205 mg</td>
<td>10 mg</td>
<td>15 mg</td>
</tr>
<tr>
<td>F5</td>
<td>60 mg</td>
<td>120 mg</td>
<td>200 mg</td>
<td>10 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>F6</td>
<td>60 mg</td>
<td>120 mg</td>
<td>205 mg</td>
<td>10 mg</td>
<td>15 mg</td>
</tr>
</tbody>
</table>

III. Evaluation of liquisolid compacts

3.1. Bulk characterisation of liquisolid systems.

Bulk characterisations of liquisolid system were estimated by Bulk density, Tapped density, Carr’s index, and Hausner’s ratio. The flow property was determined by Angle of repose. These properties were determined by using the following equations:

\[
\text{Bulk Density} = \frac{\text{Mass (g)}}{\text{bulk volume}}
\]

\[
\text{Tapped density} = \frac{\text{Mass (g)}}{\text{tapped volume}}
\]
Carr’s index = Tapped density - bulk density / tapped density X 100

Hausner’s ratio = tapped density / bulk density

Angle of repose = \(\tan \theta = h/r \).

The bulk characterisation and flow properties of liquisolid compacts are shown in table 3.

3.2. Determination of saturation solubility of liquisolid system

Solubility study was performed according to method reported by Higuchi and Connors. The liquisolid compact system F1, F2, F3, F4, F5, F6 were added in 10 ml distilled water taken in stoppered conical flask and were shaken for 24 hrs at 37\(^\circ\)C in orbital shaker. Two ml aliquots were withdrawn at 1 hr intervals and filtered through whatman filter paper. The filtered solution were analysed spectrophotometrically at 288 nm against blank\(^{10}\). The saturation solubility of liquisolid system is shown in fig 4.

3.3. Drug content of liquisolid systems

The liquisolid systems equivalent to unit dose of drug was weighed accurately and dissolved in 100 ml of phosphate buffer 7.4 and filtered through whatman filter paper. The solution were analysed by UV spectrophotometer at 288 nm and drug content calculated accordingly\(^{11}\). The drug content of various formulations are shown in table 4.

3.4. Fourier transform infrared (FTIR) spectroscopy

Fourier transform infrared was conducted using shimadzu 8300 spectrometer and the spectrum was recorded in the region of 4000-400 cm\(^{-1}\). The procedure consisted of placing a sample powder dispersed in KBr (200-400 mg) and compressed into a disc by applying a pressure of 5 tons for 5 min in a hydraulic press. The pellet was placed in the light path and the spectrum was obtained. The drug and excipients were scanned individually as well as combined from in order to find the drug – excipient interaction\(^{12}\). The IR Spectra of pure drug, carrier and formulations are shown in fig 6, 7, 8.
3.5. Differential scanning calorimetry (DSC)

Differential scanning calorimetry was performed using PerkinElmer 6000. Accurately weighed samples (about 2 mg) were placed in a sealed aluminium pans, under static air at a scan rate of 10^0C min^{-1} over a 25 to 2500C temperature range. Indium oxide was placed in aluminium pans and used as a reference. The heat flows as a function of temperature is measured for the drug, carrier and liquisolid formulations13. The DSC graph of pure drug, carrier and F2, F5 batches are shown in fig 9.

3.6. In vitro drug release studies

The in vitro drug release studies of liquisolid system was performed by using (USP type II apparatus Rotating paddle type) at rotation speed of 50 rpm in distilled water as a dissolution media at 370C was used for in vitro drug release studies. One capsule was used in each test, accurately weighed amount of liquisolid compacts was filled in capsule and immersed in dissolution medium consisting of 900 ml of phosphate buffer 7.4 at 370C. An aliquots 5ml from dissolution medium was withdrawn at specified times intervals(5,10,15,30,45,60 minutes) and replacing the same amount with the fresh medium in order to keep the total volume constant. The sample was filtered through whatman filter paper and assayed by measuring the absorbance at 288 nm using the UV-visible spectrophotometer14. The in vitro release of various formulations are shown in fig 10,11,12.
IV. Result and Discussion

4.1. UV Spectroscopy

Peaks were obtained at 288 and 278 which shows that drug is pure.

![UV spectroscopy graph](image)

Fig.1. Lamda max of etoricoxib

4.2. Melting point:

The melting point of drug sample was determined by using melting point apparatus. The melting point was found between the range of 136 -138°C. As given in the reference. The melting point of drug sample is shown in table 1,

<table>
<thead>
<tr>
<th>Drug</th>
<th>Observed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etoricoxib</td>
<td>136-138°C</td>
<td>134°C - 138°C</td>
</tr>
</tbody>
</table>
4.3. Standard curve of etoricoxib

The UV spectrum of the drug in the range of 200–400 nm on UV visible spectrophotometer revealed that wavelength of maximum absorption of etoricoxib was 288 nm. From the graph of absorbance vs. Concentration for pure etoricoxib it was observed that the drug obeys beer’s Lambert law in concentration range of 5 to 50 µg/ml ($R^2=0.999$) at 288 nm. (Fig4.)

![Calibration curve](image)

Fig. 4. Calibration curve of Etoricoxib in phosphate buffer 7.4.

4.4. Solubility studies

Quantitative solubility analysis of etoricoxib determined in different solvents and the results were illustrated in table. The etoricoxib drug was found to be more soluble in ethanol, phosphate buffer and PEG 400. The solubility of etoricoxib in various solvents are shown in table 2.
Table.2 : solubility of etoricoxib in various solvents

<table>
<thead>
<tr>
<th>S.no</th>
<th>Solvents</th>
<th>Solubility mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Water</td>
<td>0.033</td>
</tr>
<tr>
<td>2.</td>
<td>Ethanol</td>
<td>0.127</td>
</tr>
<tr>
<td>3.</td>
<td>Phosphate buffer 7.4</td>
<td>0.119</td>
</tr>
<tr>
<td>4.</td>
<td>Hcl</td>
<td>0.095</td>
</tr>
<tr>
<td>5.</td>
<td>PEG 400</td>
<td>0.126</td>
</tr>
<tr>
<td>6.</td>
<td>Chloroform</td>
<td>0.093</td>
</tr>
</tbody>
</table>

4.5. Bulk characterization and flow properties of liquisolid compact systems

The bulk density of various formulations were found to be between 0.360-0.410, tapped density between 0.413-0.460, Hausner’s ratio between 1.12- 1.15, carr’s index between 11.01-14.01. Which shows the good compressibility index of formulations. The angle of repose was found to be between 25.40-28.90°C, which shows the excellent flow properties of formulation. Results of measurements such as Tapped density, Angle of repose, carr’s index, Hausner’s ratio are presented in the table 3.

Table.3. Bulk Characterisation of formulations:

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Bulk density(g/cm³)</th>
<th>Tapped density(g/cm³)</th>
<th>Hausner’s ratio</th>
<th>Carr’s ratio%</th>
<th>Angle of repose</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.360</td>
<td>0.418</td>
<td>1.16</td>
<td>14.01</td>
<td>25.40°</td>
</tr>
<tr>
<td>F2</td>
<td>0.363</td>
<td>0.413</td>
<td>1.14</td>
<td>13.02</td>
<td>30.06°</td>
</tr>
<tr>
<td>F3</td>
<td>0.400</td>
<td>0.459</td>
<td>1.14</td>
<td>14.01</td>
<td>26.30°</td>
</tr>
<tr>
<td>F4</td>
<td>0.390</td>
<td>0.443</td>
<td>1.13</td>
<td>12.01</td>
<td>26.95°</td>
</tr>
</tbody>
</table>
4.6. Determination of saturation solubility

Saturation solubility studies were carried out for pure drug, as well as for prepared liquisolid compacts. From the result of saturation solubility studies it was observed that there was increase in solubility of drug in liquisolid compact system as compared to pure drug. With increase in the concentration of carriers solubility of drug increased and the liquisolid compacts containing microcrystalline cellulose and sodium starch glycolate in (F4) and (F5) has increased the solubility up to five times.

This improves its wettability resulting in a significant increase in solubility. The saturation solubility of liquisolid system is shown in fig 4.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Solubility µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>0.390</td>
</tr>
<tr>
<td></td>
<td>0.450</td>
</tr>
<tr>
<td></td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>12.10</td>
</tr>
<tr>
<td></td>
<td>28.90</td>
</tr>
<tr>
<td>F6</td>
<td>0.410</td>
</tr>
<tr>
<td></td>
<td>0.460</td>
</tr>
<tr>
<td></td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>11.10</td>
</tr>
<tr>
<td></td>
<td>27.60</td>
</tr>
</tbody>
</table>

Fig. 5. - Compared of solubility of pure drug with formulation F1 to F6.
4.7. Drug content of liquisolid systems

The drug content estimation was performed to ensure uniform distribution of drug. The drug content of liquisolid compact of etoricoxib was performed for all the prepared formulations. The result indicates that the drug content in all the formulations was found uniform between 88% to 96% which was analysed spectrophotometrically at λ_{max} 288nm. The drug content of various formulations are shown in table 4.

Table.4. Drug content of various formulation.

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Formulation Code</th>
<th>% Drug content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F1</td>
<td>88%</td>
</tr>
<tr>
<td>2.</td>
<td>F2</td>
<td>90%</td>
</tr>
<tr>
<td>3.</td>
<td>F3</td>
<td>88%</td>
</tr>
<tr>
<td>4.</td>
<td>F4</td>
<td>94%</td>
</tr>
<tr>
<td>5.</td>
<td>F5</td>
<td>96%</td>
</tr>
<tr>
<td>6.</td>
<td>F6</td>
<td>92%</td>
</tr>
</tbody>
</table>

4.8. Fourier transform infrared(FTIR) spectroscopy:

The IR spectra of Etoricoxib, Carrier and formulation are given in the figures. The spectrum of pure Etoricoxib presented characteristic signals at 1600.1, 1402.2, 1400.3, 1400,1300, 1090.5, 100.2, 900, 889.2, 800.1, 750.1, 655.2, 600, 595.2, 545.2, 400cm$^{-1}$, and the spectrum of carrier was presented characteristic signals at 500, 1050.1, 1058.81, 1650, 3000 cm$^{-1}$.and the spectrum of liquisolid compact system was presented characteristic signals at at 1365.1, 1350.2, 1055.4,545.3, 500.1cm$^{-1}$.The results suggested that there was no interaction of between Etoricoxib and excipients. The IR Spectra of pure drug, carrier and formulations are shown in fig 6,7,8.
Fig. 6. IR spectra of Etoricoxib

Fig. 7. IR spectra of Microcrystalline cellulose

Fig. 8. IR spectra of liquisolid formulation (F5)
4.9. Differential Scanning Calorimeter (DSC):

The DSC studies were performed to understand the nature of drug in formulation. The thermograms for pure Etoricoxib, carrier, and liquisolid formulations were presented in figure 8. The pure drug showed a melting endothermic peak at 139.07°C., Whereas thermograms of optimized formulations did not show any significant shifts in endothermic peaks. The disappearance of characteristics peaks of etoricoxib, correspond with formulation of drug solution in physical mixture due to the fact that drug is in a dissolved molecular state. Such disappearance of drug peak upon the formulation of liquisolid system indicates that there is no interaction between the drug and excipients, The DSC graph of pure drug, carrier and F2, F5 batches are shown in fig 9.

![DSC graph of pure drug, carrier and liquisolid formulations](image)

Fig.9. DSC of pure drug, carrier and liquisolid formulations
4.10. In vitro drug release studies:-

The in vitro drug release profile of pure drug Etoricoxib, Liquisolid compacts in dissolution medium are shown in figure (9, 10, 11) Liquisolid compacts of Etoricoxib showed a significant increase in the drug release as compared with pure Etoricoxib. In the liquisolid formulations F1 and F2 showing 90.9% and 95.2% drug release, F3 and F4 showing 85.2% and 96.6% drug release, and F5 and F6 showing 97.2% and 85.3% drug release respectively. All the formulation showed improved drug release rate as compared to pure Etoricoxib. The in vitro release of various formulations are shown in fig 10,11,12.

![Percentage Cumulative drug release v/s time](image-url)

Fig. 10: Comparison of drug release profile of pure Etoricoxib & F1,F2 Batches
Fig. 11. Comparison of drug release profile of pure Etoricoxib & F3,F4 Batches

Fig. 12. Comparison of drug release profile of pure Etoricoxib & F5,F6 Batches
Acknowledgement

The author is thankful to the management of Swami Vivekanand college of pharmacy Indore. For providing necessary facilities to carry out the research work and heartily thankful to my guide Dr. Shikha Agrawal for providing all the support and encouragement to carry out this studies.

Conclusion

The observations showed that there was a poor drug release in case of conventional formulation. Improvement of aqueous solubility in such case is valuable goal to improve therapeutic efficiency. Thus liquisolid compacts of etoricoxib were formulated by using liquisolid technique showed better enhancement in drug release rate and solubility of drug.

From the invitro drug release studies the optimized formulation f-5 showed fast drug release when compared to pure drug. The formulation (F5) showing 97.2 % drug release. In conclusion, the liquisolid compacts technique can be promising alternative for the formulation of water – insoluble drugs.

References

7. P.Sandhya, shadab khanam, Divya Bhatnagar and S.K.S Rao Patnaik, Formulation and Evaluation of Liquisolid Compacts of Carvedilol Shadan Woman’s College of Pharmacy, Dept. of Pharmaceutics, Khairatabad, Hyderabad, India
11. S.P.Bhilegaonkarand R.SGaud, Improved Wetting For Improved Solubility and Dissolution of Candesartan Cilexetil, Comparative Study Of Surfactant And Modified Surfactant In Varying Ratios IOSR Journal Of Pharmacy Volume 4, Issue 12 (December 2014), PP. 01-09